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The Nonsymmetric Pressure Tensor in Polyatomic Fluids 
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Nonequilibrium molecular dynamics calculations are used to show that 
polyatomic fluids can support antisymmetric stress. In a homogeneous 
system where the time dependence of vorticity is a step function, it is shown 
that the rate at which intrinsic angular velocity approaches its steady-state 
value (to = �89 • u) is determined by the magnitude of the antisymmetric 
part of the pressure tensor. 
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1. I N T R O D U C T I O N  

In this paper we present clear evidence for the existence and hydrodynamic 
relevance of the antisymmetric component  of  the pressure tensor. We present 
the results of nonequilibrium molecular dynamics calculations which show 
that the tendency in molecular fluids for the local average angular velocity 
to relax to half the vorticity is governed by the magnitude of the antisym- 
metric part  of  the pressure tensor via the vortex viscosity coefficient. 

Two sets of model calculations are described. The first set were per- 
formed using a realistic five-centered, exp-6 potential representing methane. 
This model potential developed by Williams (1) using the properties of 
molecular crystals, has been shown to predict equilibrium and nonequilibrium 
properties of  methane with reasonable accuracy throughout a wide range of 
dense fluid conditions. (2,3) The potential energy of molecules 1, 2 (assumed 
to be rigid) takes the usual a tom-a tom form 

U12 = ~ U=a (1) 
o:,B 
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The Wi l l i ams  potent ia l  assumes tha t  the potent ia l  between a tom a in molecule  
1 and a tom/3  in molecule  2 is given by  

U ~  = A~ B e x p ( - B ~ r ~ )  + C~e/r~B (2) 
. 

where  r ~  is the dis tance between a toms  a, /3. The  potent ia l  pa rame te r s  
A ,e ,  B~ e , and  C~e toge ther  with the  reducing pa rame te r s  are  given in Table  I. 

The  second set of  calculat ions  were pe r fo rmed  for  a del iberate ly  artificial  

d ia tomic  Lennard - Jones  potent ia l .  The  d ia tomic  Lennard - Jones  potent ia l  is 
defined by 

U~ B = 4~[(~/r~B) 12 - (~ / r~)  6] (3) 

The  potent ia l  pa rame te r s  were taken  f rom the chlor ine  poten t ia l  of  Singer  
e t  al. (4~ with a reduced  b o n d  length  ( =  b o n d  length/a)  o f  0.630. The potent ia l  
differed f rom tha t  o f  Singer  et  al. only in tha t  the  reduced  iner t ia  tensor  was 
786.8 t imes the  correct  value for  chlorine.  The reason for del iberate ly  mak ing  
this change will become obvious later.  The  potent ia l  pa ramete r s  and  reducing 

units for  this d ia tomic  Lennard - Jones  potent ia l  are given in Table  I. 

2. T H E O R Y  

The first descr ip t ion  of  the  proper t ies  of  a fluid with a nonsymmet r i c  
stress tensor  appears  to da te  f rom the work  o f  Born  (5~ in 1920. Since tha t  t ime 
numerous  papers  have expanded  tha t  work.  2 A br ief  summary  of  the macro-  
scopic equat ions  descr ib ing t r anspor t  processes  in dense fluids assumed to 

See Refs. 6, as well as the work cited in Refs. 7, 12, and 13. 

Table h Potential Parameters 

(A) Methane 
Interaction A*~ B*n C~*o 

C . . -  C 218,024.0 14.436 -0.4278 
C . . .  H 38,744.0 14.717 -0.1084 
H . - .  H 9,260.0 14.997 -0.0274 
Reducing parameters for methane are ~r = 4.01 A, 
Elk = 142.87 K, m = molecular weight of methane = 
16.043 AMU. Thus A*~ = A,~/~, B*~ = B ~ a ,  C* B = 
C~/a  6. The reduced CH bond length is 0.2559. 

(B) Model diatomic 
The reducing parameters are cr = 3.332A, e/k = 
178.3 K, m = 70.91 AMU 
Reduced bond length R* = 0.63 
Reduced inertia tensor = 78.11 = 786.8 times the 
actual value for chlorine m 
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be composed of rigid molecules obeying classical dynamics has been given 
by Evans and Streett. (7) That paper also gives statistical mechanical expres- 
sions for the various force/flux tensors. The pressure tensor P is defined in 
the usual way, relating the infinitesimal force dF due to nonconvective 
influences across the area dA 

dF = - pr .  dA (4) 

The superscript T denotes the transpose, which in general can be different 
from the tensor itself. I f  the local momentum density is Ou and the local 
intrinsic angular momentum density is pS ~ pOto, where to is the local 
average angular velocity, one obtains in the usual way continuity equations 
for tinear momentum and intrinsic angular momentum 

p du/dt + V . P  = 0 (5) 

and 

p d S / d t + V . Q + 2 P  a = 0  (6) 

In Eq. (6) pa is the vector dual of  the antisymmetric part  of  the pressure 
tensor, and Q, the couple tensor, is the torque anolog of the pressure tensor. 
I t  is defined by the torque d r  about x due to nonconvective influences across 
a surface dA located at x, 

d r  = - QT. dA (7) 

From the form of Eq. (6) we see that intrinsic angular momentum is not 
conserved when the pressure tensor is nonsymmetric. In that circumstance 
the antisymmetric part  of the pressure tensor governs the rate of  exchange 
between the orbital, px • u, and intrinsic angular momentum densities. 

I f  fluid properties are assumed to be isotropic, then for small departures 
from equilibrium the antisymmetric part  of  pressure tensor pa satisfies the 
constitutive relation 

Pa = - ~ , ( V  X u - 2,,,) (8) 

~, is called the vortex viscosity and we shall use the term sprain rate to 
describe the thermodynamic force V • u - 2to. 

In our calculations the pressure tensor was calculated from the usual 
expression 

1 ~ eU~j 
P = ~ re(v, - u(x,))(v~ - u(x,)) + ~ R~ ~X, (9) 

f " . 

where v,, x, denote the velocity and position of molecule l", R~j = x s - x~, 
and u is of  course the stream velocity. From (9) it can be seen that if non- 
central forces are present pT # p, in general. 
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3. M E T H O D  

Evans and Streett (7> used equilibrium molecular dynamics to calculate 
the vortex viscosity of liquid nitrogen. Unfortunately the Kubo-Green time 
correlation technique that was used <~ is very inefficient for calculating 
hydrodynamic transport coefficients. This, together with the smallness of vortex 
viscosity, meant that in spite of the 75,000 time steps, the ratio of vortex 
viscosity to shear viscosity could only be given as ~/~ = 1 x 10-a_+ 1 x 10-a[ 
Although entropy considerations imply that both coefficients are positive, 
the results of the calculations were no t  inconsistent with the conjecture that 
vortex viscosity is zero. 

The situation is made worse by the fact that, apart from liquid crystals, m) 
the single experimental determination of vortex viscosity (la) is subject to 
fairly large errors. Although the Kubo-Green  calculation provided statistically 
significant evidence for the existence of the time correlation function 
(Pa(0)-Pa(t)),  the large negative tail of  this correlation function at inter- 
mediate times meant that the integral of the time correlation function, which 
is proportional to the zero-frequency vortex viscosity, was essentially zero. 

This unsatisfactory state of affairs prompted us to use the more efficient 
technique of nonequilibrium molecular dynamics to calculate vortex viscosity. 
The idea behind nonequilibrium molecular dynamics is very simple. Instead 
of looking at fluctuations in an equilibrium system, one simply uses a 
"Maxwell  demon"  to create a nonequilibrium disturbance in the system 
and then uses either the constitutive relations or the Navier-Stokes equations 
to calculate the required transport coefficient. 

The technique was originally devised by Ashurst and Hoover, (9) who 
detailed many of the ground rules that need to be observed in using the 
method. The particular algorithms used here are modifications of the 
"homogeneous shear algorithm" developed by Ashurst and Hoover to 
calculate shear viscosity. The details of our modifications and improvements 
to the technique as applied to shear viscosity have been described elsewhere. (a) 

In our first set of calculations we calculated the vortex viscosity of 
methane using Eq. (8). To establish a steady homogeneous sprain rate, 
17 X u - 2r was calculated at each time step in the program. In general 
17 • u - 2to ~ ks, where ks is the desired sprain rate. To ensure that the 
observed and desired sprain rates are equal, the angular velocities of every 
molecule were altered so that, whatever the value of the vorticity, the 
average angular velocity satisfied the equation 

r = �89 X u  - ks] (10) 

Because the process is dissipative, thermostats were applied to the 
translational degrees of freedom so that, in a similar way, the translational 
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temperature at every time step was equal to the desired value. For  the 
sprain rates induced in these calculations the trajectory changes caused 
by the "Maxwell demon"  were relatively small, as evidenced by the fact that 
in the worst case (the highest sprain rates) the temperature was stable to 
within 67o. 

In other respects the program was the same as the normal equilibrium 
molecular dynamics program used in Ref. 2 and developed by Evans and 
Murad. (1~ The program uses quaternions to represent orientations, ensuring 
a singularity-free set of equations of motion. Normal orthogonal periodic 
boundaries were used. 

For  the second set of calculations with the diatomic Lennard-Jones 
potential the homogeneous shear algorithm described in Ref. 3 was employed. 
Time-varying oblique periodic boundaries were used in conjunction with a 
least squares procedure to guarantee a homogeneous linear velocity profile 

u = a + b x  (11)  

where a is a constant (usually zero), x denotes position, and b is the strain 
rate tensor 

V u  -= b = 0 (12)  

0 

We shall refer to ~, as the strain rate. For  this set of calculations thermostats 
were applied to the rotational degrees of  freedom. Because the molecules 
were idealized diatomics, each molecule has one degree of freedom fewer 
than in methane. Slight changes were therefore necessary to the quaternion 
equations of  motion. The modified equations of motion were 

doJpxddt = Fpxm, doJpuddt = F ~ l t  (13) 

d - ~  ~: 1 X - (14) 
z ~ "7 X 

In these equations oJpx~, ~%v~, Fpx~, and Fpy~ are the principal components of 
angular velocity and torque for molecule i. Here I is the moment of  inertia 
and ~:, 7, ~, and X are the usual quaternions. (1~ This set of six first-order 
differential equations is the minimum number of equations per molecule that 
are required for a singularity-free algorithm. 

4.  R e s u l t s  

Table II shows the results of seven 2000-time-step calculations of the 
vortex viscosity of methane. For  two different state conditions Table II 
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Table II. Vor tex  Viscosity Results for CH 4 

Estimated 
T* p* V* X u* - 2to* r/, x 107 r/ • 104(14) r/r* X 104 uncertainty, 

2.0 0.7 11.92 3.19 3.49 7.07 10 
2.0 0.7 7.94 3.24 3.49 7.20 10 
2.0 0.7 4.00 3.92 3.49 8.70 14 
2.0 0.7 7.94 - -  - -  (8.66 - il.94) 
2.0 0.9 11.91 5.99 - -  13.3 10 
2.0 0.9 7.97 8.10 - -  18.2 10 
2.0 0.9 3.99 5.72 - -  12.7 14 

a Special calculation at reduced frequency of 20.0. 

shows the dependence o f  the effective vortex viscosity coefficient upon  the 
sprain rate. F r o m  the tabulated values we see that  at T* = 2.0, p* = 0.7 
(which corresponds to a temperature  and density of  285.7 K, 18.03 moles/ 
liter) ~/T* = 9.0 +__ 1.2 X 10 -4, while at T* = 2.0, p* = 0.9 (corresponding 
to a density of  23.18 moles/liter) -qT* = 1.4 +_ 0.2 x 10 -a. 

In contrast  with the 75,000-time-step K u b o - G r e e n  calculations for 
nitrogen, (7~ these two runs o f  effectively 6000 time steps yielded results which 
were, statistically speaking, significantly different f rom zero. At  a reduced 
density o f  0.7 the ratio -%/r/ = (1.7 + 0.16) x 10 -3. This has the same order  
o f  magni tude as the nitrogen calculations. (7~ We also see that  vortex viscosity 
is a rapidly increasing funct ion of  density. A 30~o increase in density is 
observed to produce 56~ increase in vortex viscosity. 

Table I I  also shows the results of  a single calculation of  the frequency- 
dependent  vortex viscosity. This calculation was performed in a way entirely 
analogous to the recently developed method for shear viscosity. (3~ I t  can be 
seen that  within estimated uncertainties the real par t  o f  the frequency- 
dependent vortex viscosity is the same as the zero-frequency value. This is 
in dramat ic  contrast  to the corresponding situation for  shear viscosity, 
where for the same state condition,  the ratio o f  the real par t  of  the shear 
viscosity at a reduced frequency of  20.0 to the zero-frequency shear viscosity 
is 0.58. (3~ This rapid decrease of  shear viscosity with frequency is due to the 
t -312 long-time tail. This produces a strong, ~o ~ cusp at zero frequency. 
Apparent ly  vortex viscosity has a much  weaker long-time tail, if it has 
one at all. 

Al though  the methane calculations demonstrate  conclusively that  the 
pressure tensor can be nonsymmetr ic  and that  it is a linear function of  
the sprain rate (within numerical uncertainties), we felt that  a check on the 
hydrodynamic  consequences of  the nonsymmetr ic  pressure tensor would be 
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desirable. The technique of molecular dynamics places severe limitations on 
the types of hydrodynamic flow that can be studied. 

One of the predictions of the generalized hydrodynamics of polyatomic 
fluids is that if V`0 is zero, then ~7~ 

d`0 
= -  ( 2 , o - V x u )  (15) 

Furthermore, if we prepare a system where `0 = 0 at time zero and then we 
apply a constant vorticity, the intrinsic angular velocity is 

`0 -= � 8 9  X o (1  - e -~/~) ( 1 6 )  

where ~-= pO/4~/T. The periodic boundary conditions used in computer 
simulations mean that it is impossible to produce a homogeneous flow field 
where V X u is a constant and the other irreducible components of Vu are 
zero. However, in the homogeneous shear algorithm that was used to compute 
the shear viscosity of methane, ~3> Eq. (12) implies that as well as homogeneous 
shear (V~ = k ' / t he  algorithm induces homogeneous vorticity V X u = 
-~k .  Unfortunately, for the strain rates ~, that were accessible in Ref. 3, 
the antisymmetric part of the pressure tensor and the sprain rate were 
subject to so much noise as to make the vertification of  (16) impossible. 

To make a more conclusive check on the validity of (16), the following 
strategy was followed: 

(i) Look at a diatomic system with larger anisotropy than methane. 
(ii) Increase the inertia tensor of the model diatomic system to values 

much larger than ones observable in nature. 
Although this strategy means that the results are not directly applicable 

to a particular system in nature, it does allow computational confirmation 
of the hydrodynamic consequences of the nonsymmetric pressure tensor. 

As a result of (i) the computer program ran approximately five times 
faster than the corresponding methane program, enabling better statistics 
to be gathered. The increased anisotropy meant that 7/~ should be much 
larger than for the corresponding state condition in methane. The effect of 
increasing the inertia tensor (ii) has two desirable effects. First it counteracts 
the effect upon the relaxation time of  increasing ~T. For  Eq. (16) to be valid, 
~- must be much greater than the decay time of the associated Kubo-Green 
time correlation function, {Pa(0). Pa(t)). If  this were not so, a time-dependent 
vortex viscosity would have to be substituted into (16). Second, increasing the 
inertia tensor decreases the variance of the local angular velocity. This was the 
prime reason for the failure to check Eq. (16) in methane. Methane's very 
small inertia tensor allows statistical fluctuations in the angular velocity 
which are approximately 80 times greater than the corresponding fluctuations 
in translational velocity. 
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Starting from an equilibrium state (T* = 1.532, p* = 0.4610, which 
corresponds to a point midway between the triple and critical points on the 
coexistence curve~4>), homogeneous shear was imposed, y * =  0.559, for 
20,000 time steps. In the usual way the shear viscosity was calculated to be 
~* = 2.17 + 0.06. It was observed that after the initial establishment of 
antisymmetric stress and sprain (<~ 50 time steps), both quantities were 
observed to decrease monotonically. Estimates of the vortex viscosity were 
made at every time step by measuring the ratio of antisymmetric stress to 
sprain. After averaging over the entire run, vortex viscosity was found to 
be */T* = 0.078 + 0.019. 

By substituting this calculated value into (16), the reduced relaxation time 
was found to be ~-* = 76.6 or 42,560 time steps. This is much longer than 
the correlation time of the antisymmetric stress time correlation function 
(~< 500 time steps(7)), so that the assumption that ~T is a constant should be 
quite accurate. 

The relaxation time ~* was also about twice as long as the total durat ion 
of the molecular dynamics run. Thus, verification of the exponential decay 
of the sprain rate was not possible. The slope doJ/dt at time zero could be 
calculated and when substituted into (16) provided a second estimate of 
~-* = 80.4 + 4.0. The two estimates of the sprain rate relaxation time agree 
within numerical errors, implying that it is the antisymmetric stress that, in 
the absence of spatial angular velocity gradients, governs the behavior of 
the intrinsic angular velocity. 

5. C O N C L U S I O N  

We believe that there are two main conclusions to be drawn from this 
work. First, a steady-state system can support antisymmetric stress. Second, 
in the absence of gradients in the intrinsic angular velocity, antisymmetric 
stress governs the behavior of intrinsic angular velocity. This has been 
demonstrated by verifying the behavior predicted by Eq. (16) for an admit- 
tedly unrealistic system. 

For real systems such as chlorine and methane the simple behavior 
predicted by (16) is probably not observed, because the relaxation time ~- is 
so fast that the use of a constant for vortex viscosity leads to errors. The 
reason for the use of a very large moment of inertia in our model diatomic 
was partly to separate the relaxation time scales sufficiently for Eq. (16) to 
be essentially correct. Even when these time scales are not well separated, 
antisymmetric stress still determines intrinsic angular velocity, but (16) may 
not correctly describe the process. 

In earlier work we have shown that for an istropic fluid the pressure 
tensor is symmetric512> That result is supported by the results given here. 
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Dur ing  the mode l  d ia tomic  calcula t ions  the o rde r  p a r a m e t e r  was ca lcula ted  
and  found  to differ significantly f rom an iso t ropic  tensor.  The  order  p a r a m -  
eter  for  me thane  was very difficult to calcula te  since the first nonvanish ing  
o rde r  tensor  for  me thane  is o f  hexadecapo le  rank.  In  the d ia tomic  the 
normal i zed  o rde r  p a r a m e t e r  S (2) defined by the equat ion.  

S (2, = ~ (x,21 - x~x~)/~ ( x ~ l -  XiX~)equtl 

was found  to differ f rom the i so t ropic  K r o n e c k e r  del ta  tensor  by terms o f  
the o rde r  of  0.025 for  a reduced  strain rate  o f  0.56. 

F r o m  the pa r i ty  o f  the  spra in  rate  vector  it is easily seen tha t  for  the 
symmet r ic  o rde r  tensor  defined above,  spra in- induced  birefr ingence mus t  be 
quadra t i c  in the spra in  rate  [i.e., S<2~ oc (V X u - 2to)(V X u - 2to)]. 
F u r t h e r  invest igat ion o f  f low-induced birefr ingence effects is cont inuing,  but  
it appears  tha t  for  molecules  with aniso t ropies  within the range s tudied 
here  their  effects are  compara t ive ly  small .  
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